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ABSTRACT

The NASA Lewis Research Center is actively
involved in the development of expert system technol-
ogy to assist users in applying parallel processing to
computational fluid and structural dynamic analysis.
The goal of this effort is to eliminate the necessity
for the physical scientist to become a computer scien-
tist in order to effectively use the computer as a
research tool.

Programming and operating software utilities have
previously been developed to solve systems of ordinary
nonlinear differential equations on parallel scalar
processors. Current efforts are aimed at extending
these capabilities to systems of partial differential
equations, that describe the complex behavior of
fluids and structures within aerospace propulsion
systems. This paper presents some important consider-
ations in the redesign, in particular, the need for
algorithms and software utilities that can automati-
cally identify data flow patterns in the application
program and partition and allocate calculations to
the parallel processors. A library-oriented muiti-
processing concept for integrating the hardware and
software functions is described.

INTRODUCTION

Reductions in calculation times through parallel
processing can be negated by inefficiencies in program
development and execution. The complexities of data-
flow detection, code allocation, data transfer con-
trol, computation, and computation synchronization,
complicate the development of efficient parallel pro-
cessing programs. Code development for parallel pro-
cessing requires expertise in data-flow analysis and
in the mechanics of the computing system in order to
show advantage over serial computation and to justify
the costs associated with parallel processing.

It is unrealistic to require this expertise of
the general user who merely wants his program to run
faster. A better approach is to provide an intelli-
gent interface between the user and the parallel pro-
cessing system. Ideally this "expert" software will
automate program development, control program execu-
tion, and assist in managing and analyzing results
through “natural" language instructions from the user.
This approach allows the user to concentrate on the
details of his own discipline, resulting in efficient
and effective use of the parallel processing system.
An added benefit of this approach is that it promotes
technology transfer by raising the level of man-
machine communication beyond the current Fortran/00S
norm.,

The development of expert software to provide
engineering-level access to parallel processing
systems is an on-going effort at NASA Lewis. The
development of first-generation software for program-

ming and operating real-time propulsion simulations
on parallel processors is documented in Arpasi 1986;
Arpasi 1985a; Arpasi 1985b; Cole 1985; Cole 1984.

Some related efforts, sponsored by NASA Lewis are
described in Makoui and Karplus 1983; Feyock and
Collins 1986. Current emphasis is on extending these
software concepts and designs to produce a highly
automated environment for constructing and utilizing
solvers for fluid and structural dynamic analysis and
for using them as elements of large system simulators.
This will require the development of a knowledge base,
refational algorithms, and software utilities to per-
form the following functions:

(1) Converting a differential equation model into
a high-level, serial computatidnal model that lends
itself to parallel processing. )

(2) Developing a paraliel statement of the model
from the serial statement.

. {3) Generating executable load modules and exe-
cuting them on the multiprocessing facility in such a
way that they run as fast as possible using a minimum
of resources.

(4) Providing extensive library and documentation
utilities to insure the usefulness of programs and
results. )

Work has begun on the design and implementation of the
programming and operation utilities (2 and 3 above).
Results of these efforts will define interface
requirements for and guide the development of the
other utilities.

The following sections present some important
considerations regarding the development of the expert
programming and operational software. The importance
of data-flow analysis to detecting parallelism in the
computational model is described. Multidimensional
calculation grids are discussed and a data-flow tech-
nique called propagation vectoring is described as a
way of detecting and controlling the propagation of
calculations over the grid. Finally, a concept for
integrating all of the hardware and software tools
into a library-oriented multiprocessing environment
is presented.

DATA-FLOW CONSIDERATIONS

Understanding the data-flow in complex, multi-
dimensional simulations is critical to producing an
efficient parallel processing program. In this sec-
tion, a technique for data-flow identification, propa-
gation, and packing is discussed.

We start by defining a "code unit" to be a number
of equivalence statements, which will be called “ele-
ments," bound together through causal relationships
(each producing one result from any number of argu-



ments). For example, the following can be considered
a code unit

X1(i)=F1{x4(i-1)]

X2(i)=F2[X4(i-1)]

X3(i)=f3[x2(i)] (1)
X4(1)=f4(x2(1)]
X5(i)=FS[X1(i),X3(i),X4(i)]

where 1 represents the current calculation, and i-1
the prior calculation of its elements (X1 ... X5). As
shown in Fig. 1(a), the order of the calculations is
determined by the argument-result relationships. That
is, an element cannot be computed until the elements
producing its arguments are computed. One must also
take into account the fact that calculation of a code
element requires a specific amount of time. This
time, of course, depends upon the capabilities of the
computer doing the calculation. In the figure, hypo-
thetical calculation times are represented by the
height of the unshaded area of each rectangle. Shaded
areas represent a slot of time in which a calculation
of an element may occur without delaying the calcula-
tion of subsequent elements. Thus the number of data
flow paths may be minimized by judicious movement and
combining {packing) of elements without increasing the
calculation time of the code unit. Then, the resul-
tant grouping of elements (paths) may each be assigned
to. a processor for parallel calculation. As shown in
Fig. 1(a), the calculations for Eq. (1) can be packed
into two parallel paths.

For the following discussion, the term "solver"
is used to describe a multiprocessor dedicated to a
specific code unit calculation. A dual-processor
system, dedicated to calculating the two parallel
paths in the example can be considered a solver of
the code unit in the i calculation cycle. The
solver accepts a value for Xg(i-1), computes the
values X1{i)...Xgs(i) and returns these values
after the calculation interval (here, the time to
calculate fp, fg, and fs).

This solver could be used repetitively to
compute successive cycles as shown in Fig. 1{b).
This approach may be viewed as a do-loop

For i=1 ... 2 do solver, (2)

assuming that the appropriate data transfers take
place. The calculation time for two cycles is twice
the calculation time of a single cycle.

Figure 1{(c) shows an alternative two-cycle
solver. In this approach the elements for both cycles
are treated as a single code unit. The data-flow
paths can be packed into a dual-processor solver as
shown in Fig. 1(c) so as to require less calculation
time than the repetitive approach {i.e., f2(i+l)
overlaps fg(i)). It should be noted that this
approach requires that the entire code unit reside on
each processor. These exampies demonstrate that
direct parallelization of a repetitive calculation may
not result in a minimum-time solution. Indeed, it is
often necessary to expand loop calculations into a
large set of equations in order to develop a minimum-
time solver.

Once a solver has been developed, it can be
replicated. These multiple identical solvers may then

be used to parallelize the repetitive calculation of
the solver's results (e.g., other do loops). The
remainder of this section provides a discussion of
this approach to parallel processing. Repetitive cal-
culation is viewed as propagation of the solver over
a multidimensional calculation qrid (the dimension
corresponding to the arrayness of the solver's vari-
ables). An approach to identifying this propagation
is presented. Finally the use of control statements
to establish the bounds and boundary values of the
calculation grid is discussed.

Consider the following example of a three-
dimensional calculation:

X(1,J,k):F[X(]—l,J,k),X("I,J,k—l)], (3)

where 1,j,k are the coordinates of a calculation
gridpoint; X(i,j,k) is the result at the gridpoint;
and F is the functional relationship between that
result and the results at other gridpoints. Calcula-
tion and transfer of X(i-1,j,k) enables X{i,j,k) as
does X({i,j,k-1). The calculation of X(i,j,k) is
triggered when it has been enabled by each argument.
The sequencing of gridpoint calculations can be
defined in terms of the "propagation vectors" [1,0,0]
and {0,0,1], which result from the roots of the arqu-
ment coordinates:

1-1=0,3=0,k=0 and i=0,3=0,k-1=0. (8)

Since there are two propagation vectors for Eq. (3),
each gridpoint requires two enablements to trigger
its calculation. An enablement occurs when the grid-
point's coordinates matches the sum of another
triggered gridpoint's coordinates and one of the
propagation vectors.

For example, in the 4 by 4 by 4 calculation grid
shown in Fig. 2, calculation of points (2,3,3) and
(3,3,2) trigger calculation of point (3,3,3). The
calculation of (3,3,3) would occur in the fifth cal-
culation cycle of the solver, Once all gridpoints,
which can be calculated at a specific time, have been
identified, and their arguments from past cycle cal-
culations become available, those gridpoints can be
allocated to solvers and the new calculations begun.
The calculation of the solver (3) will proceed accord-
ing to the two propagation vectors until all 64 grid-
points have been calculated. The propagation vectors
therefore determine the number of gridpoints that can
be calculated each cycle. For the example, these are:
4,8,12,16,12,8,4 (see Fig. 2). Therefore if a pro-
cessor is assigned to each gridpoint which can be cal-
culated in parallel, 16 processors would be required
to calculate the 64 gridpoints in the minimum 7 cal-
culation cycles. Through proper use of propagation
vectoring, it may be possible to set up the next cycle
calculation in parallel with the current calculation
cycle. Thus propagation vectors can provide a valua-
ble runtime tool for governing the utilization of
solver resources.

Control statements are used within programs, or
as operating system commands, to govern calculation
of a code unit. They therefore form the basis for

communication with the programming and operation util-
ities. The primary control statements are:

DO <cu> ;
IF <hoolean> THEN DO <cul> ELSE DO <cu2> ;

WHILE <boolean> DO <cul> ;




FOR i=1..n,j=1..m,... DO <cu> ;
FROM <cu> ;

wnere <cu> 1is a code unit. The statement (DO) spe-
cifies only a single calculation of the code unit and
therefore the calculation grid is just a single
gridpoint.

The conditional statement (IF) implies that the
code units (cul and cu2) are data-flow independent and
therefore may be computed in parallel - as may be the
code unit which produces the boolean condition. The
grid again is but a single point for each code unit,

The WHILE statement results in a one-
dimensional calculation grid of indefinite length.
The code units {(cul, and the one computing the bool-
ean) are repetitively calculated as long as the bool-
ean is true. The code units are calculated synchron-
ously and may be calculated in parallel as long as the
results of the final calculation cycle of cul can be
aborted.

The FOR statement establishes explicit bounds
for multidimensional grids. A statement which gener-
ates the calculation depicted in Fig. 2 is

FOR i=l..4, j=l..4, k=1..4 DO
X(‘I,J,k):F[X(]—l,J,k),X(],J,k—l)]. (5)

The FROM statement is used in conjunction with
the other control statements to provide endpoint
(boundary) values. The values of points immediately
beyond the boundaries of the calculation grid are
often necessary to complete calculations within the
grid. (Calculation of X(1,1,1) requires X(0,1,1)
and X{1,1,0) in the above example.) These initial
and boundary conditions must be synchronously trans-
ferred to the calculation of the code unit each cycle,
as a function of the triggered coordinates. They can
be assumed to result from the calculation of another
code unit. For example,

DO <cul> FROM <cu2> (6)

implies that cu2 furnishes the initial values for
the calculation of cul. In this case, the code units
are strongly linked since the propagation of cul
over the grid determines the propagation of cu2, and
the results of cu2 may be direct functions of the
grid coordinates,

MULTIPROCESSING ENVIRONMENT

Expert software for programming and operating
parallel processors is envisioned as part of a dis-
tributed, cooperative, multiprocessing environment for
scientific computing. A preliminary concept for such
an environment is shown in Fig. 3. It consists of two
major computing systems: The multiprocessor facility
and the library. The multiprocessor facility contains
multiple parallel processors, some dedicated to the
solution of particular codes (e.g., fluids solver A,
and structures solver B), and others for general-
purpose computing (e.q., for use in designing other
dedicated solvers, or for integrating these solvers
into large system analysis). The library contains
documentation, predeveloped code, and databases for
recall by the user. Users might interface to the
multiprocessor through personal computers and user-
dedicated parallel processors containing the afore-
mentioned expert software utilities. The functions

of specific utilities are further described in the
following paragraphs.

Expert Software Utilities

The programming utility is used to assist the
user in creating parallel processing tasks. The user
specifies the calculation task, without regard for
parallelism, using control and equivalence statements
to describe the calculation. The task may utilize
lTibrary calls to make use of established algorithms,
or to integrate any of the facility's solvers into the
calculation. It is possible that other expert soft-
ware could automate the selection of algorithms and
solvers based on a higher-level, (differential equa-
tion) statement of the task. It is important that a
structure be imposed on task specification to insure
that sufficient information be provided for data-flow
analysis, and for documentation of the process. In
the current design effort, that structure is being
based on that described in Arpasi 1985b, with the
addition of dimensional data-types, higher-level cal-
culation control statements, and other enhancements.

The partitioning utility accepts the structured
definition of the task along with a description of the
multiprocessor facility available for its calculation.
It provides any required links to the library, does
syntax and semantic testing, and offers advice on pro-
gram optimization. Then, using previously establisha:
characteristics of the multiprocessor facility, it
breaks.the high-level statements into basic opera-
tions, computes their calculation times and uses data-
flow relationships (resulting from the kind of
analysis described in the previous section) to estab-
lish the task elements.

The translating utility converts the task ele-
ments into executable code for the target processors.
This code, linkage information, argument transfer
maps, information from the partitioning utility, the
source program, and all documentation, is sent to the
library for runtime reference, Also included in this
task packet is a descriptive database to establish
high-level communication between the operation utility
and the user,

The operation utility assembles tasks into paral-
lel processing Jobs. e user communicates through a
structure designed to simplify job specification.
Typically, this will involve the use of control state-
ments and operational commands such as those described
in Cole 1984, The parallel processing job is assem-
bled from tasks contained in the library, or from
using a control statement. The calculation of a dedi-
cated solver is treated as a computational element.
A1l necessary job information is submitted to the
facility manager (Fig. 3). The operation utility pro-
vides for interactive communication between the user
and the multiprocessor facility manager during job
execution.

The multiprocessor facility manager (MFM) con-
trols job calculation based on the control statements.
The MFM functions are shown in Fig. 4, These func-
tions are performed each calculation cycle according
to rules established during job formulation. The
setup for the next calculation cycle is done in paral-
lel with the calculation and transfer of results for
the current calculation cycle. This setup includes:
propagation and control (enablement and triggering)
to define the calculations required in the next cycle;
followed by the generation of any boundary values
needed, and in parallel, any partitioning and packing




of next cycle calculations which may be regquired.
This, in turn, is followed by the development of load
modules and allocation of these modules to the pro-
cessors to be used in the next cycle.

Each control processor in the MFM has a number
of service (e.g., calculation) processors assigned to
its domain. Allocation is made from this domain to
promote parallelism. Any service processor may become
a control processor if it is allocated a control
statement. Thus job execution proceeds on a tree-
growth basis. Results are passed down the tree as
specified by the data transfer maps, until the final
results reach the facility manager. They are then
transferred back to the user via the operation
utility.

The results, an executable session history, and
other appropriate documentation are sent from the
operating utility to the library for future reference.

CONCLUDING REMARKS

A concept for a library-oriented multiprocessor
environment for computational fluid and structural
dynamics analysis has been presented. This concept
depends on the development of expert software utili-
ties that will automate the programming and operating
of parallel processors, eliminating the need for the
user to "think parallel.”" The feasibility of such
utilities has previously been demonstrated for paral-
lel processing of ordinary differential equations.
Current efforts are aimed at extending those concepts
and designs to the more general case of multidimen-
sional, partial differential equations. Of course,
the concepts presented are merely an outline of a
general approach to developing the proposed
multiprocessing environment. As specific software
utilities are designed and tested, a clearer picture
of the overall environment should emerge leading to
the development and demonstration of a prototype

system. It is recognized that the overhead time
required by the expert software utilities, particu-
larly at runtime, may offset any reduction in time
gained by the parallel processing. Careful attention
must be given to hoth software and hardware design to
avoid this.
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FIGURE 3. - CONCEPTUAL MULTIPROCESSING ENVIRONMENT.
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